908 resultados para theoretical study


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations have been carried out to explore the catalytic activation of C–H bonds in methane by the iron atom, Fe, and the iron dimer, Fe2. For methane activation on an Fe atom, the calculations suggest that the activation of the first C–H bond is mediated via the triplet excited-state potential energy surface (PES), with initial excitation of Fe to the triplet state being necessary for the reaction to be energetically feasible. Compared with the breaking of the first C–H bond, the cleavage of the second C–H bond is predicted to involve a significantly higher barrier, which could explain experimental observations of the HFeCH3 complex rather than CH2FeH2 in the activation of methane by an Fe atom. For methane activation on an iron dimer, the cleavage of the first C–H bond is quite facile with a barrier only 11.2, 15.8 and 8.4 kcal/mol on the septet state energy surface at the B3LYP/6-311+G(2df,2dp), BPW91/6-311+G(2df,2dp) and M06/B3LYP level, respectively. Cleavage of the second C–H bond from HFe2CH3 involves a barrier calculated respectively as 18.0, 10.7 and 12.4 kcal/mol at the three levels. The results suggest that the elimination of hydrogen from the dihydrogen complex is a rate-determining step. Overall, our results indicate that the iron dimer Fe2 has a stronger catalytic effect on the activation of methane than the iron atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five different anionic [C3′H4′O]•- isomers, i.e. the radical anions of acrolein, acetyl carbene, formyl methyl carbene, methoxy vinylidene, and oxyallyl are generated in an ion beam mass spectrometer and subjected to neutralization-reionization (NR) mass spectrometric experiments including neutral and ion decomposition difference (NIDD) mass spectrometry; the latter allows for the examination of the neutrals' unimolecular reactivity. Further, the anionic, the singlet and triplet neutral, and the cationic [C3′H4′O] •-/0/•+ potentialenergy surfaces are calculated at the B3LYP/6-311++G(d,p) level of theory. For some species, notably the singlet state of oxyallyl, the theoretical treatment is complemented by G2, CASSCF, and MR-CI calculations. Theory and experiment are in good agreement in that at the neutral stage (i) acrolein does not react within the μsec timescale, (ii) acetyl and formyl methyl carbenes isomerize to methyl ketene, (iii) methoxy vinylidene rearranges to methoxy acetylene, (iv) singlet 1A1 oxyallyl undergoes ring closure to cyclopropanone, and (v) triplet 3B2 oxyallyl may have a lifetime sufficient to survive a NR experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutral NCN is made in a mass spectrometer by charge stripping of NCN-., while neutral dicyanocarbene NCCCN can be formed by neutralization of either the corresponding anionic and cationic species, NCCCN-. and NCCCN+.. Theoretical calculations at the RCCSD(T)/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory indicate that the (3)Sigma (-)(g) State of NCCCN is 18 kcal mol(-1) more stable than the (1)A(1) state. While the majority of neutrals formed from either NCCCN-. or NCCCN+. correspond to NCCCN, a proportion of the neutral NCCCN molecules have sufficient excess energy to effect rearrangement, as evidenced by a loss of atomic carbon in the neutralization reionization (NR) spectra of either NCCCN+. and NCCCN-.. C-13 labeling studies indicate that loss of carbon occurs statistically following or accompanied by scrambling of all three carbon atoms. A theoretical study at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level of theory indicates that C loss is a consequence of the rearrangement sequence NCCCN --> CNCCN --> CNCNC and that C scrambling occurs within singlet CNCCN via the intermediacy of a four-membered C-2v-symmetrical transition structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different radical anions of the empirical formula C5H2 have been generated by negative ion chemical ionization mass spectrometry in the gas phase. The isomers C4CH2 •-, and HC5H•- have been synthesized by unequivocal routes and their connectivities confirmed by deuterium labeling, charge reversal, and neutralization reionization experiments. The results also provided evidence for the existence of neutrals C4CH2, C2CHC2H, and HC5H as stable species; this is the first reported observation of C2CHC2H. Ab initio calculations confirm these structures to be minima on the anion and neutral potential energy surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theory suggests that CCBCC (1) will rearrange to planar cyclo-C4B (19) if the excess energy of 1 is greater than or equal to16.1 kcal mol(-1) [calculations at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-31G(d) level of theory]. Cyclo-C4B lies only 1.1 kcal mol(-1) above CCBCC. The planar nature of symmetrical cyclo-C4B is attributed to multicentered bonding involving boron. If cyclo-C4B (19) has an excess energy of greater than or equal to24.4 kcal mol-1, it may ring open to form CCCCB (3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three anion isomers of formula C7H have been synthesised in the mass spectrometer by unequivocal routes. The structures of the isomers are \[HCCC(C-2)(2)](-), C6CH- and C2CHC4-. One of these, \[HCCC(C-2)(2)](-), is formed in sufficient yield to allow it to be charge stripped to the corresponding neutral radical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C60Br8, unlike C60Br6 and C60Cl6, forms a solid charge-transfer compound with tetrathiafulvalene (TTF), the composition being C60Br8(TTF)(8). The unique complex-forming property of C60Br8 can be understood on the basis of the electronic structures of the halogenated derivatives of C-60. Molecular orbital calculations show that the low LUMO energy of C60Br8 compared with the other halogen derivatives renders the formation of the complex with TTF favourable, the four virtual LUMOs being able to accept 8 electrons. The Raman spectrum of C60Br8(TTF)(8) shows a marked softening of the bands (-46 cm(-1) on average) with respect to C60Br8 suggesting that indeed 8 electrons are transferred per C60Br8 molecule, one from each TTF molecule. The complex is weakly paramagnetic and shows a magnetic transition around 80 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron and hole mobilities of octathio[8]circulene (sulflower) crystal have been calculated using quantum chemical methods, with accurate determination of reorganization energies and the rate of charge transfer, the key parameters controlling the charge carriers conductance. We find this molecular crystal to be an excellent conductor with large mobilities for both the charge carriers. Moreover, the hole mobility is found to be slightly larger than the electron mobility. Such an ambipolar organic crystal with substantial carrier mobilities shows possibilities of sophisticated device fabrication in advanced electronics.